Mitigating Climate Change through Catalytic Conversions of CO2: A review

##plugins.themes.academic_pro.article.main##

Naseer Ahmad Safi
Azharulhaq Kamran

Abstract

In the pursuit of a carbon-neutral economy, CO2 catalytic hydrogenation to methanol emerges as a pivotal technology for mitigating CO2 and addressing the manufacturing needs of future fuels, chemicals, and materials. The development of this technology not only offers solutions to environmental challenges, such as the greenhouse effect, but also facilitates the effective utilization of CO2 resources. The aims of this review is reveal intuitions into the structural and surface properties of heterogeneous catalysts, emphasizing the interface between metal and support. The exploration of these factors delves into their functions in reaction mechanisms, influencing catalytic activity, selectivity, and stability in CO2 hydrogenation to methanol.

Keywords

Environmental, mitigation, carbon, natural, economy, hetrogeneous, catalysts, methanol, production

##plugins.themes.academic_pro.article.details##

How to Cite
Safi , N. A., & Kamran, A. (2024). Mitigating Climate Change through Catalytic Conversions of CO2: A review. Nangarhar University International Journal of Biosciences, 3(02), 524–527. https://doi.org/10.70436/nuijb.v3i02.288

References

  1. Ali, K. A., Abdullah, A. Z., & Mohamed, A. R. (2015). Recent development in catalytic technologies for methanol synthesis from renewable sources: A critical review. Renewable and Sustainable Energy Reviews, 44, 508–518. https://doi.org/10.1016/J.RSER.2015.01.010
  2. Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L., & Frusteri, F. (2008). Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 350(1), 16–23. https://doi.org/10.1016/j.apcata.2008.07.028
  3. Aresta, M., Dibenedetto, A., & Angelini, A. (2013). Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709–1742. https://doi.org/10.1021/cr4002758
  4. Bai, S. T., De Smet, G., Liao, Y., Sun, R., Zhou, C., Beller, M., Maes, B. U. W., & Sels, B. F. (2021). Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chemical Society Reviews, 50(7), 4259–4298. https://doi.org/10.1039/d0cs01331e
  5. C. Grabow, L., & Mavrikakis, M. (2011). Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catalysis, 1(4), 365–384. https://doi.org/10.1021/cs200055d
  6. Chen, S., Yao, Y., Lan, L., Cao, Y., Yan, C., Gong, M., & Chen, Y. (2012). Effect of zirconium precursor on performance of Pd/Ce0.45Zr0.45La0.1O1.95 three-way catalyst. Cuihua Xuebao/Chinese Journal of Catalysis, 33(11), 1762–1771. https://doi.org/10.1016/s1872-2067(11)60445-2
  7. Choi, E. J., Lee, Y. H., Lee, D. W., Moon, D. J., & Lee, K. Y. (2017). Hydrogenation of CO2 to methanol over Pd–Cu/CeO2 catalysts. Molecular Catalysis, 434(2017), 146–153. https://doi.org/10.1016/j.mcat.2017.02.005
  8. Deerattrakul, V., Yigit, N., Rupprechter, G., & Kongkachuichay, P. (2019). The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol. Applied Catalysis A: General, 580(January), 46–52. https://doi.org/10.1016/j.apcata.2019.04.030
  9. Fujitani, T., Saito, M., Kanai, Y., Watanabe, T., Nakamura, J., & Uchijima, T. (1995). Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen. Applied Catalysis A, General, 125(2), 0–3. https://doi.org/10.1016/0926-860X(95)00049-6
  10. Gao, P., Zhang, L., Li, S., Zhou, Z., & Sun, Y. (2020). Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels. ACS Central Science, 6(10), 1657–1670. https://doi.org/10.1021/acscentsci.0c00976
  11. García-Trenco, A., R. White, E., Regoutz, A., J. Payne, D., S. P. Shaffer, M., & K. Williams, C. (2017). Pd2Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO2 to Methanol. ACS Catalysis, 7(2), 1186–1196. https://doi.org/10.1021/acscatal.6b02928
  12. Graciani, J., Mudiyanselage, K., Xu, F., Baber, A. E., Evans, J., Senanayake, S. D., Stacchiola, D. J., Liu, P., Hrbek, J., Fernández Sanz, J., & Rodriguez, J. A. (2014). Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 345(6196), 546–550. https://doi.org/10.1126/science.1253057
  13. Iwasa, N., Suzuki, H., MasaoTerashita, Arai, M., & Takezawa, N. (2004). Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts. Catalysis Letters, 96(1–2), 75–78. https://doi.org/10.1023/B:CATL.0000029533.41604.13
  14. Jadhav, S. G., Vaidya, P. D., Bhanage, B. M., & Joshi, J. B. (2014). Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chemical Engineering Research and Design, 92(11), 2557–2567. https://doi.org/10.1016/J.CHERD.2014.03.005
  15. Kattel, S., Liu, P., & G. Chen, J. (2017). Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. Journal of the American Chemical Society, 139(29), 9739–9754. https://doi.org/10.1021/jacs.7b05362
  16. Kirilin, A. V., Dewilde, J. F., Santos, V., Chojecki, A., Scieranka, K., & Malek, A. (2017). Conversion of Synthesis Gas to Light Olefins: Impact of Hydrogenation Activity of Methanol Synthesis Catalyst on the Hybrid Process Selectivity over Cr-Zn and Cu-Zn with SAPO-34. Industrial and Engineering Chemistry Research, 56(45), 13392–13401. https://doi.org/10.1021/acs.iecr.7b02401
  17. Lee, J. S., Lee, K. H., Lee, S. Y., & Kim, Y. G. (1993). A Comparative Study of Methanol Synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 Catalyst. Journal of Catalysis, 144(2), 414–424. https://doi.org/10.1006/JCAT.1993.1342
  18. Liu, Y. M., Liu, J. T., Liu, S. Z., Li, J., Gao, Z. H., Zuo, Z. J., & Huang, W. (2017). Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111): Comparison with Cu(111). Journal of CO2 Utilization, 20(January), 59–65. https://doi.org/10.1016/j.jcou.2017.05.005
  19. Marcos, F. C. F., Cavalcanti, F. M., Petrolini, D. D., Lin, L., Betancourt, L. E., Senanayake, S. D., Rodriguez, J. A., Assaf, J. M., Giudici, R., & Assaf, E. M. (2022). Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 427, 130947. https://doi.org/10.1016/J.CEJ.2021.130947
  20. Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy and Environmental Science, 3(1), 43–81. https://doi.org/10.1039/b912904a
  21. Niu, J., Liu, H., Jin, Y., Fan, B., Qi, W., & Ran, J. (2022). Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 47(15), 9183–9200. https://doi.org/10.1016/j.ijhydene.2022.01.021
  22. Ou, Z., Ran, J., Niu, J., Qin, C., He, W., & Yang, L. (2020). A density functional theory study of CO2 hydrogenation to methanol over Pd/TiO2 catalyst: The role of interfacial site. International Journal of Hydrogen Energy, 45(11), 6328–6340. https://doi.org/10.1016/J.IJHYDENE.2019.12.099
  23. Safi, N. A., Li, Y., Yu, B., Liu, P., Wang, J., Ge, H., & Zhang, K. (2022). The dependence of high catalytic performance on the tunable oxygen vacancy in the CZxS/Zn-HZSM-5 bifunctional catalyst for alkylation of benzene and syngas. Applied Organometallic Chemistry, 36(7). https://doi.org/10.1002/aoc.6744
  24. Snider, J. L., Streibel, V., A. Hubert, M., S. Choksi, T., Valle, E., Chester Upham, D., Schumann, J., S. Duyar, M., Gallo, A., Abild-Pedersen, F., & F. Jaramillo, T. (2019). Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In–Pd Catalysts for CO2 Hydrogenation to Methanol. ACS Catalysis, 9(4), 3399–3412. https://doi.org/10.1021/acscatal.8b04848
  25. Sun, K., Rui, N., Zhang, Z., Sun, Z., Ge, Q., & Liu, C. J. (2020). A highly active Pt/In2O3catalyst for CO2hydrogenation to methanol with enhanced stability. Green Chemistry, 22(15), 5059–5066. https://doi.org/10.1039/d0gc01597k
  26. Wang, H., Zhang, G., Fan, G., Yang, L., & Li, F. (2021). Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO2 Hydrogenation to Produce Methanol. Industrial & Engineering Chemistry Research, 60(45), 16188–16200. https://doi.org/10.1021/acs.iecr.1c03117
  27. Ye, R., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C. K., Xu, Z., Russell, A. G., Li, Q., Fan, M., & Yao, Y. (2019). CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications. https://doi.org/10.1038/s41467-019-13638-9
  28. Zabilskiy, M., Sushkevich, V. L., Newton, M. A., Krumeich, F., Nachtegaal, M., & van Bokhoven, J. A. (2021). Mechanistic Study of Carbon Dioxide Hydrogenation over Pd/ZnO-Based Catalysts: The Role of Palladium–Zinc Alloy in Selective Methanol Synthesis. Angewandte Chemie - International Edition, 60(31), 17053–17059. https://doi.org/10.1002/anie.202103087