Effects of dietary edible bird’s nest supplementation on hippocampal neurons of multigenerational mice

##plugins.themes.academic_pro.article.main##

Mahaq Obaidullah
Abu Hassim Hasliza
Mohd Noor Mohd Hezmee
Titisari Nurina
Ahmad Hafandi

Abstract

Edible bird’s nest (EBN) is a natural food product rich in glycoproteins such as sialic acid, minerals and essential amino acids. Sialic acid from EBN most effectively absorbs in the brain, where it plays a fundamental role in the ganglioside structure involved in the brain development and synaptic transmission, particularly in preterm infants. Nevertheless, the impact of multiple generations of EBN on brain cellular variations is not yet fully understood. Therefore, the aim of this study was to investigate the impact of dietary EBN supplementation on brain neurons density and histology of multigenerational mice. A total of 40 females C57BL/6 mice as (F0) generation were equally distributed into four treatment and a control groups. Mice in the treatment groups were orally administered with four different sources of EBN for eight weeks. Subsequently, all mice were bred to produce the first generation (F1) followed by the second generation (F2). The sialic acid concentration in EBN samples was examined by High-Performance Liquid Chromatography (HPLC). The brain tissue of all mice was collected for histological study. The research found that dietary EBN significantly increased the number of neurons in the hippocampus of three generations (F0, F1, and F2) compared to the control. Histological study showed that the average number of neurons was significantly (P<0.05) higher in EBN-South and EBN-North groups compared to control in F0, F1 and F2 generations. However, the population of neurons was not significantly (P>0.05) higher in EBN-Commercial and EBN-Borneo groups compared to control. The highest neuron density was found in the mice supplemented with EBN contained higher concentration of sialic acid. In conclusion, it was suggested that the sialic acid from maternal EBN supplementation during pregnancy transmitted to the next generations of mice, where it influenced the development and functions of the fetal brain.

Keywords

Edible bird’s nest (EBN), neuron density, hippocampus, histology, multigenerational mice

##plugins.themes.academic_pro.article.details##

Author Biographies

Mahaq Obaidullah, Afghan International Islamic University

Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, MALAYSIA.

Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, AIIU, Darula Aman, 1004, Kabul, AFGHANISTAN.

Abu Hassim Hasliza, Afghan International Islamic University

Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, MALAYSIA.

Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, AIIU, Darula Aman, 1004, Kabul, AFGHANISTAN.

Mohd Noor Mohd Hezmee, Universiti Putra Malaysia

Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, MALAYSIA.

Titisari Nurina, Universitas Brawijaya

Department of Veterinary Physiology, Faculty of Veterinary Medicine, Universitas Brawijaya, 65151 East Java, INDONESIA

Ahmad Hafandi, Universiti Putra Malaysia

Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, MALAYSIA.

Institute of Tropical Agriculture and Food Safety, Universiti Putra Malaysia, 43400 UPM Serdang Selangor Darul Ehsan, MALAYSIA.

 

How to Cite
Obaidullah, M., Hasliza, A. H., Mohd Hezmee, M. N., Nurina, T., & Hafandi, A. (2024). Effects of dietary edible bird’s nest supplementation on hippocampal neurons of multigenerational mice. Nangarhar University International Journal of Biosciences, 3(03), 33–46. https://doi.org/10.70436/nuijb.v3i03.340

References

  1. Ahmad, H., Ong, S. Q., & Tan, E. H. (2019). The diet for edible-nest swiftlets: nutritional composition and cost of life stages of Megaselia scalaris Loew (Diptera: Phoridae) bred on 3 commercial breeding materials. International journal of insect science, 11, 1-5.https://doi.org/10.1177/1179543318823533
  2. Baptista, P., & Andrade, J. P. (2018). Adult hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Frontiers in Neuroanatomy, 12(6), 1–23.https://doi.org/10.3389/fnana.2018.00044
  3. Cao, Q., Xu, X. M., DeVries, W. H., Enzmann, G. U., Ping, P., Tsoulfas, P., ... & Whittemore, S. R. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience, 25(30), 6947-6957. https://doi.org/10.1523/jneurosci.1065-05.2005
  4. Careena, S., Sani, D., Tan, S. N., Lim, C. W., Hassan, S., Norhafizah, M., … Lim, C. T. S. (2018). Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats. Evidence-Based Complementary and Alternative Medicine, 2018, 1–7.https://doi.org/10.1155/2018/9318789
  5. Deng, K., He, H., Qiu, J., Lorber, B., Bryson, J. B., & Filbin, M. T. (2009). Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. Journal of Neuroscience, 29(30), 9545–9552. https://doi.org/10.1523/jneurosci.1175-09.2009
  6. Foley, A. G., Rønn, L. C. B., Murphy, K. J., & Regan, C. M. (2003). Distribution of polysialylated neural cell adhesion molecule in rat septal nuclei and septohippocampal pathway: transient increase of polysialylated interneurons in the subtriangular septal zone during memory consolidation. Journal of Neuroscience Research, 74(6), 807–817.https://doi.org/10.1002/jnr.10820
  7. Hao, Q., & Rahman, A. (2016). Swiftlets and edible bird’s nest industry in Asia. PJSRR Pertanika Journal of Scholarly Research Reviews, 2(1), 32–48.
  8. Idris, A., Abdullah, A.-A., & Abd-Rehman, M. (2014). An overview of the study of the right habitat and suitable environmental factors that influence the success of edible bird nest production in Malaysia. Asian Journal of Agricultural Research, 8(1), 1–16. https://doi.org/10.3923/ajar.2014.1.16
  9. Innis, S. M. (2000). The role of dietary n–6 and n–3 fatty acids in the developing brain. Developmental neuroscience, 22(5-6), 474-480.https://doi.org/10.1159/000017478
  10. Kanato, Y., Kitajima, K., & Sato, C. (2008). Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology, 18(12), 1044–1053.https://doi.org/10.1093/glycob/cwn084
  11. Khalid, S. K. A., Abd Rashed, A., Aziz, S. A., & Ahmad, H. (2019). Effects of sialic acid from edible bird nest on cell viability associated with brain cognitive performance in mice. World Journal of Traditional Chinese Medicine, 5(4), 214.https://doi.org/10.4103/wjtcm.wjtcm_22_19
  12. Koike, M., Shibata, M., Tadakoshi, M., Gotoh, K., Komatsu, M., Waguri, S., … Uchiyama, Y. (2008). Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury. The American Journal of Pathology, 172(2), 454–469.https://doi.org/10.2353/ajpath.2008.070876
  13. Lundberg, J., & McFarlane, D. A. (2012). National transformation programme (NTP) annual report 2017. Geomorphology, 157–158, 153–168.https://doi.org/10.1016/j.geomorph.2011.04.043
  14. Ma, F., & Liu, D. (2012). Sketch of the edible bird’s nest and its important bioactivities. Food Research International, 48(2), 559–567.https://doi.org/10.1016/j.foodres.2012.06.001
  15. Mahaq, O., P. Rameli, M. A., Jaoi Edward, M., Mohd Hanafi, N., Abdul Aziz, S., Abu Hassim, H., ... & Ahmad, H. (2020). The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain and behavior, 10(11), e01817.https://doi.org/10.1002/brb3.1817
  16. Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the East.” Food Research International, 38(10), 1125–1134.https://doi.org/10.1016/j.foodres.2005.02.008
  17. Marni, S., Marzura, M. R., Norzela, A. M., Khairunnisak, M., Bing, C. H., & Eddy, A. A. (2014). Preliminary study on free sialic acid content of edible bird nest from Johor and Kelantan. Malaysian Journal of Veterinary Research, 5(1), 9–14.
  18. Morgan, B. L. G., & Winick, M. (1981). The subcellular localization of administered N-acetylneuraminic acid in the brains of well-fed and protein restricted rats. British Journal of Nutrition, 46(2), 231–238.https://doi.org/10.1079/BJN19810028
  19. Nabilah, N., Mohamad, H., & Nawi, N. M. (2018). Consumer ’ s perception on the quality of controversial contents in edible bird ’ s nest products. Scholarly Research Reviews, 4, 1–9.
  20. Palmano, K., Rowan, A., Guillermo, R., Guan, J., & McJarrow, P. (2015). The role of gangliosides in neurodevelopment. Nutrients, 7(5), 3891–3913.https://doi.org/10.3390/nu7053891
  21. Praag, V., Af, S., Br, C., N, T., Td, P., & Fh, G. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(2), 1030–1034.https://doi.org/10.1038/4151030a
  22. Price, J. J., Johson, K. P., Bush, S. E., & Clayton, D. H. (2005). Phylogenetic relationships of the Papuan Swiftlet Aerodramus papuensis and implications for the evolution of avian echolocation. Ibis, 147(4), 790–796.https://doi.org/10.1111/j.1474-919X.2005.00467.x
  23. Quek, M. C., Chin, N. L., Yusof, Y. A., Law, C. L., & Tan, S. W. (2018a). Characterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Research International, 109, 35–45.https://doi.org/10.1016/j.foodres.2018.03.078
  24. Rahmann, H. (1995). Brain gangliosides and memory formation. Behavioural Brain Research, 66(8), 105 – 116.https://doi.org/10.1016/0166-4328(94)00131-X
  25. Rashed, A. A., & Nazaimoon, W. W. M. (2010). Effect of edible bird’s nest on Caco-2 cell proliferation. Journal of Food Technology, 8(3), 126–130.https://doi.org/10.3923/jftech.2010.126.130
  26. Sato, C. & Kitajima, K. (2013). Disialic, oligosialic and polysialic acids: distribution, functions and related disease. Journal of biochemistry, 154(2), 115–136.https://doi.org/10.1093/jb/mvt057
  27. Sato, C. (2017). Releasing mechanism of neurotrophic factors via polysialic acid. Vitamins and Hormones. Vol. 104, pp. 89–112.https://doi.org/10.1016/bs.vh.2016.11.004
  28. Stangl, D., & Thuret, S. (2009). Impact of diet on adult hippocampal neurogenesis. Genes and Nutrition, 4(4), 271–282.https://doi.org/10.1007/s12263-009-0134-5
  29. Teh, Sue-Siang. Ma, Z.-F. (2018). Bioactive components and pharmacological properties of edible bird’s nest. International Proceedings of Chemical, Biological and Environmental Engineering, 103(7), 29–34.
  30. Wang, B., & Brand-Miller, J. (2003). The role and potential of sialic acid in human nutrition. European Journal of Clinical Nutrition, 57(11), 1351–1369.https://doi.org/10.1038/sj.ejcn.1601704
  31. Wang, Bing. (2009). Sialic acid is an essential nutrient for brain development and cognition. Annual Review of Nutrition, 29(1), 177–222.https://doi.org/10.1146/annurev.nutr.28.061807.155515
  32. Wang, Bing. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition, 3(3), 465-472.https://doi.org/10.3945/an.112.001875
  33. Wang, Bing, Hu, H., & Yu, B. (2006). Molecular characterization of pig ST8Sia IV a critical gene for the formation of neural cell adhesion molecule and its response to sialic acid supplement in piglets. Nutritional Neuroscience, 9(3–4), 147–154. https://doi.org/10.1080/10284150600903594
  34. Wheeler, D. W., White, C. M., Rees, C. L., Komendantov, A. O., Hamilton, D. J., & Ascoli, G. A. (2015). Hippocampome. org : a knowledge base of neuron types in the rodent hippocampus. eLIFE Tools and resources, 4, 1–28. https://doi.org/10.7554/eLife.09960
  35. Wieruszeski, J. M., Michalski, J. C., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H., … Vliegenthart, J. F. (1987). Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). Characterization of novel types of extended core structure, Gal beta(1–3)[GlcNAc beta(1–6)] GalNAc alpha(1–3). Journal of Biological Chemistry, 262(14), 6650–6657.https://doi.org/10.1016/S0021-9258(18)48291-9
  36. Wu, M. V., & Hen, R. (2014). Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus, 24(7), 751–761.https://doi.org/10.1002/hipo.22265
  37. Xie, Y., Zeng, H., Huang, Z., Xu, H., Fan, Q., Zhang, Y., & Zheng, B. (2018). Effect of maternal administration of edible bird’s nest on the learning and memory abilities of suckling offspring in mice. Neural Plasticity, 2018, 1–13.https://doi.org/10.1155/2018/7697261
  38. Yew, M. Y., Koh, R. Y., Chye, S. M., Othman, I., & Ng, K. Y. (2014). Edible bird’s nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells. BMC Complementary and Alternative Medicine, 14, 391.https://doi.org/10.1186/1472-6882-14-391
  39. Yew, M. Y., Koh, R. Y., Chye, S. M., Zainal Abidin, S. A., Othman, I., & Ng, K. Y. (2019). Neurotrophic properties and the de novo peptide sequencing of edible bird’s nest extracts. Food Bioscience, 32(9), 1–12.https://doi.org/10.1016/j.fbio.2019.100466
  40. Yu-Qin, Y., Liang, X., Hua, W., Hui-Xing, Z., Xin-Fang, Z., & Bu-Sen, L. (2000). Determination of edible bird’s nest and its products by gas chromatography. Journal of Chromatographic Science, 38(1), 27–32.https://doi.org/10.1093/chromsci/38.1.27
  41. Zainal Abidin, F., Hui, C. K., Luan, N. S., Mohd Ramli, E. S., Hun, L. T., & Abd Ghafar, N. (2011). Effects of edible bird's nest (EBN) on cultured rabbit corneal keratocytes. BMC complementary and alternative medicine, 11(1), 1-10.https://doi.org/10.1186/1472-6882-11-94
  42. Zhang, Cheng, Li, Y., Wang, C., Lv, R., & Song, T. (2013). Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of alzheimer’s disease in aluminum-overloaded rat. PLoS ONE, 8(8), 1–8.https://doi.org/10.1371/journal.pone.0071087
  43. Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660.https://doi.org/10.1016/j.cell.2008.01.033
  44. Zhiping, H., Imam, M. U., Ismail, M., Ismail, N., Yida, Z., Ideris, A., … Mahmud, R. (2015). Effects of edible bird’s nest on hippocampal and cortical neurodegeneration in ovariectomized rats. Food and Function, 6(5), 1701–1711.https://doi.org/10.1039/C5FO00226E
  45. Ziebell, F., Dehler, S., Martin-Villalba, A., & Marciniak-Czochra, A. (2018). Revealing age-related changes of adult hippocampal neurogenesis using mathematical models. Development, 145(1), dev153544.https://doi.org/10.1242/dev.153544