Review on the Synthesis and Biological Importance of Triazole Ring-containing Structures

##plugins.themes.academic_pro.article.main##

Hamimullah Watandost
Abdul Wali Atif
Khudaidad Kochai
Ziaullah Ahmadzai
Wali Imam Ulfat

Abstract

Currently, many organic compounds have been synthesized and identified by chemists in chemical laboratories, numbering in the millions.  The triazole ring is categorized as a subset of organic heterocyclic compounds. It constitutes a significant and extensive subject matter, and an in-depth examination of triazoles and their derivatives can lead to the development of specialized medical and biological chemical agents aimed at preventing a range of diseases.  This article generally has two parts, the first part of the article is dedicated to triazole syntheses, in which the research of different authors is reviewed from 2005 to 2021, and the second part of this article is the biological importance of the triazole ring. Based on the special importance of medicine, we can mention antimicrobial and antifungal drugs that have a high level of medicinal activity. Unfortunately, we don’t have standard chemical labs, to perform experiments. Nowadays, lab researches are replacing one group by another or one atom by another to obtain compound with deferent properties.

Keywords

1,2,4-Triazole derivatives, Biological activity of triazole, Medicinal importance

##plugins.themes.academic_pro.article.details##

How to Cite
Watandost, H., Atif, A. W., Kochai, K., Ahmadzai, Z., & Ulfat, W. I. (2023). Review on the Synthesis and Biological Importance of Triazole Ring-containing Structures. Nangarhar University International Journal of Biosciences, 2(03), 51–62. https://doi.org/10.70436/nuijb.v2i03.69

References

  1. Ashok, D., Ram Reddy, M., Nagaraju, N., Dharavath, R., Ramakrishna, K., Gundu, S., ... & Sarasija, M. (2020). Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1, 2, 3-triazole-based pyrazole aldehydes and their benzimidazole derivatives. Medicinal Chemistry Research, 29, 699-706.
  2. Asif, M. (2014). A mini review on antimalarial activities of biologically active substituted triazoles derivatives. Int J Adv Res Chem Sci, 1, 22-28.
  3. Beasley, S. C., Cooper, N., Gowers, L., Gregory, J. P., Haughan, A. F., Hellewell, P. G., ... & Warneck, J. B. (1998). Synthesis and evaluation of a novel series of phosphodiesterase IV inhibitors. A potential treatment for asthma. Bioorganic & medicinal chemistry letters, 8(19), 2629-2634.
  4. Chai, B., Qian, X., Cao, S., Liu, H., & Song, G. (2003). Synthesis and insecticidal activity of 1, 2, 4-triazole derivatives. Arkivoc, 2, 141-145.
  5. Chaudhary, P. M., Chavan, S. R., Shirazi, F., Razdan, M., Nimkar, P., Maybhate, S. P., ... & Deshpande, S. R. (2009). Exploration of click reaction for the synthesis of modified nucleosides as chitin synthase inhibitors. Bioorganic & medicinal chemistry, 17(6), 2433-2440.
  6. Chebanov, V. A. (2005). Sakhno Ya. I., Desenko SM, Shishkina SV, Musatov VI, Shishkin OV, Knyazeva IV. Synthesis, 2597.
  7. Chen, X. B., Liu, Z. C., Yang, L. F., Yan, S. J., & Lin, J. (2014). A Three-component catalyst-free approach to regioselective synthesis of dual highly functionalized fused pyrrole derivatives in water–ethanol media: Thermodynamics versus kinetics. ACS Sustainable Chemistry & Engineering, 2(5), 1155-1163.
  8. DAI Hong, L. I. U., MIAO, W. K., WU, S. S., ZHANG, X., WANG, T. T., & FANG, J. X. (2011). Synthesis and bioactivities of novel thiazole amide derivatives containing a 2-substituted-1, 3-thiazolidine ring. Chinese Journal of Organic Chemistry, 31(11), 1943.
  9. De Clercq, E. R. I. K. (1997). In search of a selective antiviral chemotherapy. Clinical Microbiology Reviews, 10(4), 674-693.
  10. Deng, Q., Shi, H. W., Ding, N. N., Chen, B. Q., He, X. P., Liu, G., ... & Chen, G. R. (2012). Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl. Corrosion Science, 57, 220-227.
  11. Duran, A., Dogan, H. N., & Rollas, S. (2002). Synthesis and preliminary anticancer activity of new 1, 4-dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1, 2, 4-triazoline-5-thiones. Il Farmaco, 57(7), 559-564.
  12. Gladkov, E. S., Gura, K. A., Sirko, S. M., Desenko, S. M., Groth, U., & Chebanov, V. A. (2012). Features of the behavior of 4-amino-5-carboxamido-1, 2, 3-triazole in multicomponent heterocyclizations with carbonyl compounds. Beilstein Journal of Organic Chemistry, 8(1), 2100-2105.
  13. Gladkov, E. S., Sirko, S. M., Musatov, V. I., Shishkina, S. V., Tkachenko, I. G., Komykhov, S. A., & Desenko, S. M. (2018). New spiro derivative of dihydro-1, 2, 3-triazolo [1, 5-a] pyrimidine as a product of the multicomponent reaction. Chemistry of Heterocyclic Compounds, 54, 1139-1144.
  14. Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., ... & Van der Eycken, E. V. (2010). The unexpected alternative direction of a Biginelli-like multicomponent reaction with 3-amino-1, 2, and 4-triazole as the urea component. Tetrahedron Letters, 51(16), 2095-2098.
  15. Guan, L. P., Jin, Q. H., Tian, G. R., Chai, K. Y., & Quan, Z. S. (2007). Synthesis of some quinoline-2 (1H)-one and 1, 2, 4-triazolo [4, 3-a] quinoline derivatives as potent anticonvulsants. J Pharm Pharm Sci, 10(3), 254-62.
  16. Gujjar, R., Marwaha, A., El Mazouni, F., White, J., White, K. L., Creason, S., ... & Phillips, M. A. (2009). Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. Journal of medicinal chemistry, 52(7), 1864-1872.
  17. H Zhou, C., & Wang, Y. (2012). Recent research in triazole compounds as medicinal drugs. Current medicinal chemistry, 19(2), 239-280.
  18. Hafez, H., Abbas, H. A., & El-Gazzar, A. R. (2008). Synthesis and evaluation of analgesic, anti-inflammatory and ulcerogenic activities of some triazolo-and 2-pyrazolyl-pyrido [2, 3-]-pyrimidines. Acta Pharmaceutica, 58(4), 359-378.
  19. Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M., & Kumari, N. S. (2005). Synthesis, characterization, and antimicrobial activity of some substituted 1, 2, and 3-triazoles. European journal of medicinal chemistry, 40(11), 1173-1178.
  20. Johns, B. A., Weatherhead, J. G., Allen, S. H., Thompson, J. B., Garvey, E. P., Foster, S. A., ... & Miller, W. H. (2009). The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore. Bioorganic & medicinal chemistry letters, 19(6), 1802-1806.
  21. Karami, B., Farahi, M., & Banaki, Z. (2015). A novel one-pot method for the highly regioselective synthesis of triazoloapyrimidinedicarboxylates using silica sodium carbonate. Synlett, 1804-1807.
  22. Keri, R. S., Patil, S. A., Budagumpi, S., & Nagaraja, B. M. (2015). Triazole: a promising antitubercular agent. Chemical biology & drug design, 86(4), 410-423.
  23. Komykhov, S. A., Bondarenko, A. A., Musatov, V. I., Diachkov, M. V., Gorobets, N. Y., & Desenko, S. M. (2017). (5 S, 7 R)-5-Aryl-7-methyl-4, 5, 6, 7-tetrahydro-[1, 2, 4] triazolo [1, 5-a] pyrimidin-7-ols as products of three-component condensation. Chemistry of Heterocyclic Compounds, 53, 378-380.
  24. Lipson, V. V., Karnozhitskaya, T. M., Shishkina, S. V., Shishkin, O. V., & Turov, A. V. (2009). Reactions of 3-amino-1, 2, 4-triazoles with cinnamic aldehydes. Russian Chemical Bulletin, 58, 1441-1444.
  25. Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C., & Gambari, R. (2000). Pyrazolo-triazoles as light activable dna cleaving agents. Bioorganic & medicinal chemistry, 8(9), 2343-2346.
  26. Niu, X., Yang, B., Fang, S., Li, Y., Zhang, Z., Jia, J., & Ma, C. (2014). An efficient one-pot synthesis of 1, 2, 4-triazoloquinoxalines. Tetrahedron, 70(31), 4657-4660.
  27. Pacifico, R., Destro, D., Gillick-Healy, M. W., Kelly, B. G., & Adamo, M. F. (2021). Preparation of Acidic 5-Hydroxy-1, 2, 3-triazoles via the Cycloaddition of Aryl Azides with β-Ketoesters. The Journal of Organic Chemistry, 86(17), 11354-11360.
  28. Parchinsky, V. Z. (2006). Schuvalova O. Ushalova O. Krachenko DV. Krasavin M. Tetrahedron Lett, 47, 947.
  29. Passannanti, A., Diana, P., Barraja, P., Mingoia, F., Lauria, A., & Cirrincione, G. (1998). Pyrrolo [2, 3-d] [1, 2, 3] triazoles as potential antineoplastic agents. Heterocycles, 6(48), 1229-1235.
  30. Petrova, O. N., Zamigajlo, L. L., Shishkina, S. V., Shishkin, O. V., Musatov, V. I., Borisov, A. V., & Lipson, V. V. (2013). A facile one-pot highly chemo-and regioselective synthesis of the novel heterocyclic system indolo [1, 2-c] azolo [1, 5-a] quinazoline-8, 10-dione. Tetrahedron, 69(52), 11185-11190.
  31. Sadek, K. U., Abdel-Hameed, A. M., Abdelnabi, H. A., & Meleigy, Y. (2019). An efficient green synthesis of novel 1 H-imidazo [1, 2-a] imidazole-3-amine and imidazo [2, 1-c] [1, 2, 4] triazole-5-amine derivatives via Strecker reaction under controlled microwave heating. Green Processing and Synthesis, 8(1), 297-301.
  32. Saito, T., Obitsu, T., Minamoto, C., Sugiura, T., Matsumura, N., Ueno, S., ... & Toda, M. (2011). Pyrazolo [1, 5-a] pyrimidines, triazolo [1, 5-a] pyrimidines, and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorganic & medicinal chemistry, 19(20), 5955-5966.
  33. Sakhno, Y. I., Desenko, S. M., Shishkina, S. V., Shishkin, O. V., Sysoyev, D. O., Groth, U., ... & Chebanov, V. A. (2008). Multicomponent cyclocondensation reactions of aminoazoles, arylpyruvic acids, and aldehydes with controlled chemoselectivity. Tetrahedron, 64(49), 11041-11049.
  34. Santiago, J. V., & Burtoloso, A. C. (2019). Synthesis of Fused Bicyclic [1, 2, 3]-Triazoles from γ-Amino Diazoketones. ACS omega, 4(1), 159-168.
  35. Sheremet, E. A., Tomanov, R. I., Trukhin, E. V., & Berestovitskaya, V. M. (2004). Synthesis of 4-Aryl-5-nitro-1, 2, 3-triazoles. Russian Journal of Organic Chemistry, 40(4), 594-595.
  36. Wei, F., Wang, W., Ma, Y., Tung, C. H., & Xu, Z. (2016). Regioselective synthesis of multi substituted 1, 2, 3-triazoles: moving beyond the copper-catalyzed azide–alkyne cycloaddition. Chemical Communications, 52(99), 14188-14199.
  37. Weide, T., Saldanha, S. A., Minond, D., Spicer, T. P., Fotsing, J. R., Spaargaren, M., ... & Fokin, V. V. (2010). NH-1, 2, 3-triazole inhibitors of the VIM-2 metallo-β-lactamase. ACS Medicinal Chemistry Letters, 1(4), 150-154.