Amelioration of Heat Stress-Induced Alterations in Immune indices, Serum Enzyme Activity, Antioxidant Ability and Gene Expression in Wistar Rats through Nutritional Strategies

##plugins.themes.academic_pro.article.main##

Mohammad Malyar Rahmani
Maazullah Nasim
Abdul Waris Shinwari
Mohammad Bayer Darmel

Abstract

High ambient temperature and humidity have a negative impact on livestock health and can lead to heat stress in animals. The objective of this study was to assess the impacts of SeP, ZnP, P and SeZnP on the growth performance, serum enzyme activity, antioxidant status, immune function, and mRNA expression of Wistar rats exposed to high ambient temperature. Seventy-two male Wistar rats were randomly allocated to six groups: Control (CON), high temperature (HT), high temperature plus probiotics (HT+P, CFU, L. acidophilus 1011/mL and S. cerevisiae 109/mL), high temperature plus zinc-fortified probiotics (HT+ZnP, 100mg/L), high temperature plus selenium-fortified probiotics (HT+SeP, 0.3mg/L), and high temperature plus selenium/zinc-fortified probiotics (HT+SeZnP, 0.3mg/L + 100mg/L). The feeding period lasted forty days, and blood and tissue samples were collected on the final day. The results demonstrated that all supplemented groups (P, SeP, ZnP, and SeZnP) significantly enhanced growth performance compared to the control group (p < 0.05). Notably, SeZnP supplementation significantly increased GSH content, SOD activity, GSH-Px activity, while reduced MDA content, creatinine, LDH, CK, ALP, AST, ALT, and blood urea nitrogen levels in the serum of Wistar rats. The concentrations of IFN-γ, IL-6, and IL-2 (p < 0.05) increased with all supplemented treatments, while IL-10 decreased. Moreover, SeP, ZnP, and SeZnP significantly upregulated the expression of GPx1 and SOD1 genes (p < 0.05), while downregulated Hsp90 and Hsp70 heat shock genes (p < 0.05). In conclusion, this product shows potential as a nutritive supplement for animals exposed to high ambient temperatures. Implementing this strategy can help producers maintain the health, comfort, and productivity of their animals during the summer season.

Keywords

Antioxidant, status, Genes, expression, Heat, stress, Immune, function, Nutritional, Strategies, Wistar, rats

##plugins.themes.academic_pro.article.details##

How to Cite
Rahmani, M. M., Nasim, M., Shinwari, A. W., & Darmel, M. B. (2024). Amelioration of Heat Stress-Induced Alterations in Immune indices, Serum Enzyme Activity, Antioxidant Ability and Gene Expression in Wistar Rats through Nutritional Strategies. Nangarhar University International Journal of Biosciences, 3(02), 113–118. https://doi.org/10.70436/nuijb.v3i02.179

References

  1. Atakisi, O., Atakisi, E., & Kart, A. (2009). Effects of dietary zinc and l-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanase quails. Biological trace element research, 132(1-3), 136-143.
  2. Babinska, I., Rotkiewicz, T., & Otrocka-Domagala, I. (2005). The effect of Lactobacillus acidophilus and Bifidobacterium spp. administration on the morphology of the gastrointestinal tract, liver and pancreas in piglets. Pol J Vet Sci, 8(1), 29-35.
  3. Bhusari, S., Hearne, L. B., Spiers, D. E., Lamberson, W. R., & Antoniou, E. (2008). Transcriptional profiling of mouse liver in response to chronic heat stress. Journal of Thermal Biology, 33(3), 157-167. doi:https://doi.org/10.1016/j.jtherbio.2008.01.001
  4. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Vet World, 9(3), 260-268. doi:10.14202/vetworld.2016.260-268
  5. Frigeri, K. D. M., Kachinski, K. D., Ghisi, N. d. C., Deniz, M., Damasceno, F. A., Barbari, M., . . . Vieira, F. M. C. (2023). Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals, 13(3), 350.
  6. Gan, F., Chen, X., Liao, S. F., Lv, C., Ren, F., Ye, G., . . . Huang, K. (2014). Selenium-Enriched Probiotics Improve Antioxidant Status, Immune Function, and Selenoprotein Gene Expression of Piglets Raised under High Ambient Temperature. J Agric Food Chem, 62(20), 4502-4508. doi:10.1021/jf501065d
  7. Ismail, I. B., Al Busadah, K., & El-Bahr, S. (2013). Oxidative Stress Biomarkers and Biochemical Profile in Broilers Chicken Fed Zinc Bacitracin and Ascorbic Acid under Hot Climate. American Journal of Biochemistry and Molecular Biology, 3, 202-214. doi:10.3923/ajbmb.2013.202.214
  8. Khan, H., Alhomida, A., Sobki, S., Habib, S., Al Aseri, Z., Ali Khan, A., & Al-Moghairi, A. (2015). Serum markers of tissue damage and oxidative stress in patients with acute myocardial infarction.
  9. Malyar, R. M., Li, H., Enayatullah, H., Hou, L., Farid, R. A., Liu, D., . . . Huang, K. (2019). Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature. 3 Biotech, 9(8), 291.
  10. Mokondjimobe, E., Longo-Mbenza, B., Akiana, J., Ndalla, U. O., Dossou-Yovo, R., Mboussa, J., & Parra, H.-J. (2012). Biomarkers of oxidative stress and personalized treatment of pulmonary tuberculosis: emerging role of gamma-glutamyltransferase. Advances in pharmacological sciences, 2012, 465634-465634. doi:10.1155/2012/465634
  11. Nzeyimana, J. B., Fan, C., Zhuo, Z., Butore, J., & Cheng, J. (2023). Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle, a review. Journal of Animal Behaviour and Biometeorology, 11(3), 2023018-2023018.
  12. Petrocchi Jasinski, F., Evangelista, C., Basiricò, L., & Bernabucci, U. (2023). Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals, 13(7), 1260.
  13. Polsky, L., & von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645-8657. doi:https://doi.org/10.3168/jds.2017-12651
  14. Sahin, K., Smith, M., Onderci, M., Sahin, N., Gursu, M., & Kucuk, O. (2005). Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84(6), 882-887.
  15. Song, Z., Liu, L., Sheikhahmadi, A., Jiao, H., & Lin, H. (2012). Effect of Heat Exposure on Gene Expression of Feed Intake Regulatory Peptides in Laying Hens. Journal of biomedicine & biotechnology, 2012, 484869. doi:10.1155/2012/484869
  16. Spencer, J. D., Boyd, R. D., Cabrera, R., & Allee, G. L. (2003). Early weaning to reduce tissue mobilization in lactating sows and milk supplementation to enhance pig weaning weight during extreme heat stress1,2. Journal of Animal Science, 81(8), 2041-2052. doi:10.2527/2003.8182041x
  17. Tortuero, F., Rioperez, J., Fernandez, E., & Rodriguez, M. L. (1995). Response of piglets to oral administration of lactic acid bacteria. Journal of food protection, 58(12), 1369-1374.
  18. Wang, F., Li, Y., Cao, Y., & Li, C. (2015). Zinc might prevent heat-induced hepatic injury by activating the Nrf2-antioxidant in mice. Biol Trace Elem Res, 165(1), 86-95. doi:10.1007/s12011-015-0228-4
  19. Wankar, A. K., Rindhe, S. N., & Doijad, N. S. (2021). Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Tropical Animal Health and Production, 53(1), 70.

Most read articles by the same author(s)